基于AIUKF的锂离子电池SOC估算

何志刚, 李尧太, 盘朝奉, 魏涛

电源技术 ›› 2020, Vol. 44 ›› Issue (4) : 518-521.

PDF(961 KB)
中文核心期刊
中国科技核心期刊
中国化学与物理电源行业协会会刊
中国电子学会化学与物理电源分会会刊
PDF(961 KB)
电源技术 ›› 2020, Vol. 44 ›› Issue (4) : 518-521. DOI: 10.3969/j.issn.1002-087X.2020.04.011
研究与设计

基于AIUKF的锂离子电池SOC估算

  • 何志刚1, 李尧太1, 盘朝奉2, 魏涛1
作者信息 +

SOC estimation of lithium ion battery based on AIUKF

  • HE Zhi-gang1, LI Yao-tai1, PAN Chao-feng2, WEI Tao1
Author information +
文章历史 +

摘要

锂离子电池作为电动汽车的动力源,其荷电状态(SOC)的准确估算可以有效提高系统的工作效率,防止过充过放带来的安全隐患。首先建立了电池的二阶RC等效电路模型,采用递推最小二乘法对其进行参数辨识,然后在UKF的基础上引入自适应迭代,对SOC估计值重新进行UT变换,并再次利用观测值来改善状态估计,最后采用改进的Sage-Husa估计器对过程和量测噪声进行自适应修正。仿真结果表明,所提方法具有良好的估算精度及适用性。

Abstract

Lithium-ion battery is the power source of electric vehicles. The accurate estimation of the state of charge (SOC) can effectively improve the system efficiency and prevent the safety hazard caused by overcharge and over discharge. In this paper, the second-order RC model of the battery was established, and the recursive least squares method was used to identify the parameters. Then the adaptive iteration was introduced on the basis of UKF, the state estimation value was re-transformed with unscented transformation (UT), and the observation value was used again to improve the state estimation. Finally, the improved Sage-Husa estimator was used to adaptively correct the process and measurement noise. The simulation results show that the proposed method has good estimation accuracy and applicability.

关键词

锂电池 / SOC / AIUKF / BMS

Key words

lithium batteries / SOC / AIUKF / BMS

引用本文

导出引用
何志刚, 李尧太, 盘朝奉, . 基于AIUKF的锂离子电池SOC估算[J]. 电源技术, 2020, 44(4): 518-521 https://doi.org/10.3969/j.issn.1002-087X.2020.04.011
HE Zhi-gang, LI Yao-tai, PAN Chao-feng, et al. SOC estimation of lithium ion battery based on AIUKF[J]. Chinese Journal of Power Sources, 2020, 44(4): 518-521 https://doi.org/10.3969/j.issn.1002-087X.2020.04.011
中图分类号: TM912.9   

参考文献

[1] CHEN Z, YANG L, ZHAO X, et al.Online state of charge estima-tion of Li-ion battery based on an improved unscented Kalman filter approach[J]. Applied Mathematical Modelling, 2019, 70:532-544
[2] BARILLAS J K, LI J, GÜNTHER C, et al. A comparative study and validation of state estimation algorithms for Li-ion batteries in bat-tery management systems[J]. Appl Energy, 2015, 155:455-462.
[3] DONG G Z, WEI J, CHEN Z.Kalman filter for onboard state of charge estimation and peak power capability analysis of lithium-ion batteries[J]. J Power Sources, 2016, 328:615-626.
[4] PASCHERO M, STORTI G L, RIZZI A, et al.A novel mechanical analogy based battery model for SOC estimation using a multi-cell EKF[J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1695-1702.
[5] HE Z G, CHEN D, PAN C F, et al.State of charge estimation of power Li-ion batteries using a hybrid estimation algorithm based on UKF[J]. Electrochimica Acta, 2016, 211:101-109.
[6] PENG S, ZHU X, XING Y, et al.An adaptive state of charge estima-tion approach for lithium-ion series-connected battery system[J]. J Power Sources, 2018, 392:48-59.
[7] 王璐,刘忠.基于自适应迭代UKF的纯距离目标定位算法[J].中南大学学报(自然科学版),2016,47(2):503-507.
[8] XU X, WANG W, CHEN L.Order reduction of lithium-ion battery model based on solid state diffusion dynamics via large scale sys tems theory[J]. Journal of Electrochemical Society,2016,163(7): 1429-1441.
[9] LI X, WANG Z, ZHANG L.Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 174:33-44.
[10] JIANG H L, LIU G H, LI J, et al.Model based fault diagnosis for drillstring washout using iterated unscented Kalman filter[J]. Jour-nal of Petroleum Science and Engineering, 2019, 180: 246-256.

基金

国家重点研发计划“新能源汽车”重点专项(2018YFB0104400)

PDF(961 KB)

12

Accesses

0

Citation

Detail

段落导航
相关文章

/