基于改进CSO算法的光伏系统发电功率短期预测

宋子博, 葛曼玲, 谢冲, 郭志彤

电源技术 ›› 2022, Vol. 46 ›› Issue (2) : 182-185.

PDF(3654 KB)
中文核心期刊
中国科技核心期刊
中国化学与物理电源行业协会会刊
中国电子学会化学与物理电源分会会刊
PDF(3654 KB)
电源技术 ›› 2022, Vol. 46 ›› Issue (2) : 182-185. DOI: 10.3969/j.issn.1002-087X.2022.02.019
研究与设计:物理电源

基于改进CSO算法的光伏系统发电功率短期预测

  • 宋子博1,2, 葛曼玲1,2, 谢冲1,2, 郭志彤1,2
作者信息 +

Short-term prediction of photovoltaic system power generation based on improved chicken swarm algorithm

  • SONG Zibo1,2, GE Manling1,2, XIE Chong1,2, GUO Zhitong1,2
Author information +
文章历史 +

摘要

为了提高光伏发电系统短期输出功率的预测精度,建立了基于改进鸡群算法优化支持向量机(ICSO-SVM)的预测模型,在鸡群算法中引入动态惯性权重和自适应因子加强算法的寻优能力。通过计算得到对光伏发电影响较大的因素为太阳辐射强度、大气温度和相对湿度;计算出待预测日期和历史日期之间的关联度,确定预测所需要的训练样本并对模型进行训练;利用训练好的预测模型对预测地区秋季平稳天气和突变天气的光伏阵列输出功率分别进行预测。仿真实验表明:该模型的平均绝对百分比误差和均方误差与改进前相比分别降低5.547%和0.080,与基于粒子群优化算法模型相比分别降低8.255%和0.202,该模型使预测精度得到有效提高。

Abstract

To improve the short-term output power prediction accuracy of photovoltaic power generation, a prediction model based on improved chicken swarm optimization-support vector machine (ICSO-SVM) was established. The dynamic inertia weights and adaptive factors were introduced into the chicken swarm algorithm to strengthen the algorithm’s optimization ability. The factors greatly impacting the photovoltaic power generation were obtained through calculations, including solar radiation intensity, atmospheric temperature and relative humidity. The correlation degree between the predicted date and the historical date was obtained, the training samples needed for the prediction were determined, and the prediction model was trained with the training samples. The output powers of PV array in the stable and abrupt weather in autumn were predicted by using the trained prediction model. The simulation experiment results show that the mean absolute percentage error and mean square error of the model reduce by 5.547% and 0.080 compared with those before the improvement, and by 8.255% and 0.202 respectively compared with those of the model based on particle swarm optimization algorithm. The method can effectively improve the prediction accuracy.

关键词

光伏发电 / 改进鸡群算法 / 支持向量机 / 输出功率预测

Key words

photovoltaic power generation / improved chicken swarm algorithm / support vector machine / output power prediction

引用本文

导出引用
宋子博, 葛曼玲, 谢冲, . 基于改进CSO算法的光伏系统发电功率短期预测[J]. 电源技术, 2022, 46(2): 182-185 https://doi.org/10.3969/j.issn.1002-087X.2022.02.019
SONG Zibo, GE Manling, XIE Chong, et al. Short-term prediction of photovoltaic system power generation based on improved chicken swarm algorithm[J]. Chinese Journal of Power Sources, 2022, 46(2): 182-185 https://doi.org/10.3969/j.issn.1002-087X.2022.02.019
中图分类号: TM615   

参考文献

[1] 高长伟,刘晓明,陈海,等.光伏市电互补系统建模及其运行特性[J].电工技术学报,2017,32(5):200-207.
[2] 胡迪,丁明,毕锐,等.光伏和风电互补性对高渗透率可再生能源集群接入规划影响分析[J].中国电机工程学报,2020,40(3):821-836.
[3] 王昕,黄柯,郑益慧,等.基于萤火虫算法—广义回归神经网络的光伏发电功率组合预测[J].电网技术,2017,41(2):455-461.
[4] 邹玉炜,苗风东,高相铭.分布式光伏变负荷工况发电功率预测系统设计[J].电源技术,2020,44(2):239-242.
[5] ZHENLEI X, ZHICONG C, HAIFANG Z, et al.A short-term photovoltaic power forecasting model based on a radial basis function neural network and similar days[J]. IOP Conference Series: Earth and Environmental Science, 2019, 227(2): 22032.
[6] 宋人杰,刘福盛,马冬梅,等.基于相似日和WNN的光伏发电功率超短期预测模型[J].电测与仪表,2017,54(7):75-80.
[7] 谭建斌,段春艳,班群.基于改进神经网络的光伏发电功率短期预测方法研究[J].可再生能源,2019,37(8):1192-1197.
[8] 张彩庆,郑强.SKBA-LSSVM短期光伏发电功率预测模型[J].电力系统及其自动化学报,2019,31(8):86-93.
[9] 郑家明,CHELLALI R,陈闯,等.具有自适应特性的改进鸡群算法[J].微电子学与计算机,2018,35(10):93-98.
[10] 吴定会,孔飞,纪志成.鸡群算法的收敛性分析[J].中南大学学报(自然科学版),2017,48(8):2105-2112.
[11] 吴忠强,于丹琦,康晓华.改进鸡群算法在光伏系统MPPT中的应用[J].太阳能学报,2019,40(6):1589-1598.
[12] 杨菊蜻,张达敏,张慕雪,等.一种混合改进的鸡群优化算法[J].计算机应用研究,2018,35(11):3290-3293.

基金

河北省自然科学基金资助项目(No.E2019202019)

PDF(3654 KB)

9

Accesses

0

Citation

Detail

段落导航
相关文章

/