王健, 毛建, 唐超伟, 孙小康, 候晓双, 王春生, 廖垠钦
锂离子电池凭借其高能量密度和长寿命,在轨道交通与储能系统中得到了广泛应用,但随着充放电循环次数的增加,其健康状态(SOH)逐步衰退,给电池管理带来安全风险与维护挑战。传统的SOH预测方法主要依赖单一视角的增量容量分析(ICA)及常规数据驱动模型,难以全面捕捉电池退化过程中电化学特性与时序动态的多尺度变化,导致预测精度和鲁棒性均受限。提出了一种基于多视角数据分析的SOH预测方法,通过融合电压视图与时间视图下的增量容量(IC)曲线信息构建多视图健康因子(HI),并设计了结合Transformer与极限梯度提升(XGBoost)的预测框架。其中,Transformer采用动态时间窗调整和双尺度注意力机制,以适应不同退化阶段下的时序特征提取。而XGBoost则通过引入物理信息约束,进一步提升了预测的稳定性与鲁棒性。在马里兰大学的PL13电池训练集中,该方法实现的均方根误差(RMSE)仅为3.13×10-3,决定系数R2高达0.997;而在PL11电池测试集中,RMSE仅为4.57×10-3,R2达到0.994,充分验证了该方法在多视角特征融合和动态时序建模方面的卓越性能。