Capacity fading failure analysis of Li-S pouch cell

YANG Xingyu, ZHANG Tao, GAO Wenchao, LIU Yanxia

Chinese Journal of Power Sources ›› 2024, Vol. 48 ›› Issue (4) : 628-633.

PDF(3553 KB)
中文核心期刊
中国科技核心期刊
中国化学与物理电源行业协会会刊
中国电子学会化学与物理电源分会会刊
PDF(3553 KB)
Chinese Journal of Power Sources ›› 2024, Vol. 48 ›› Issue (4) : 628-633. DOI: 10.3969/j.issn.1002-087X.2024.04.010
Research and design: Chemicalpower sources

Capacity fading failure analysis of Li-S pouch cell

Author information +
History +

Abstract

An in-situ and ex-situ method was used to analysis the cyclic failure capacity of lithium-sulfur pouch cell quantificationally, including reversible and irreversible capacity loss. Reversible capacity loss are mainly caused by current polarization, electrolyte loss and electrode expansion, while irreversible capacity loss mainly consists of lithium sulfide deposition on negative electrode, polysulfide adhesion on separator and electrolyte dissolution, etc. According to calculation and comparison, the main factors caused cycle failure of lithium-sulfur pouch cell are lithium sulfide deposition and pulverization of lithium metal anode accounting for about 47%, meanwhile polysulfide adhesion on separator accounting for about 25% secondly. Therefore, it is necessary to focus on analysis and improvement of major factors, so as to improve the cycle performance and practical process of lithium-sulfur battery.

Key words

Li-S pouch cell / failure analysis / capacity fading / quantificational decomposition

Cite this article

Download Citations
YANG Xingyu, ZHANG Tao, GAO Wenchao, et al. Capacity fading failure analysis of Li-S pouch cell[J]. Chinese Journal of Power Sources, 2024, 48(4): 628-633 https://doi.org/10.3969/j.issn.1002-087X.2024.04.010

References

[1] 张新河, 王娜, 汤春微, 等. 锂硫电池研究进展[J]. 电源技术, 2018, 42(6): 905-908.
[2] 何梦雪. 锂硫电池的穿梭效应抑制及循环稳定性能研究[D]. 哈尔滨:哈尔滨工业大学, 2021.
[3] GUO D, LI X, WAHYUDI W, et al.Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries[J]. ACS Nano, 2020, 14(12):17163-17173.
[4] 刁岩. Li-S 二次电池硫正极电极过程及容量衰减机理研究[D]. 长沙:国防科技大学, 2015.
[5] 焦萌, 张文佳. 锂硫电池正极材料研究进展[J]. 电源技术, 2022, 46(8): 825-832.
[6] ZHANG X L, WANG W K, WANG A B, et al.Improved cycle stability and high security of Li-B alloy anode for lithium-sulfur battery[J]. J Mater Chem A, 2014, 2:11660-11665.
[7] MA G Q, WEN Z Y, WANG Q S, et al.Enhanced cycle performance of a Li-S battery based on a protected lithium anode[J]. J Mater Chem A, 2014, 2, 19355-19359.
[8] SHEN C, ANDREL P, ZHENG J P.Unraveling the Li2S deposition process on a polished graphite cathode for enhancing discharge capacity of lithium-sulfur batteries[J]. ACS Appl Energy Mater, 2019, 2(1):3860-3868.
[9] 尤雷. 锂硫电池硫正极/锂金属负极关键材料的设计及电化学性能研究[D]. 武汉:湖北大学, 2022.
[10] WANG Z, DONG Y, LI H, et al.Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5: 5002.
[11] 杨裕生. 电化学储能研究22年回顾[J]. 电化学, 2020, 26(4): 443-463.
[12] KONG L, CHEN J X, PENG H J, et al.Current-density dependence of Li2S/Li2S2 growth in lithium-sulfur batteries[J]. Energy Environ Sci, 2019, 12(10): 2976-2982.
[13] LI S P, CHEN X, HU F, et al.Cobalt-embedded carbon nanofiber as electrocatalyst for polysulfide redox reaction in lithium sulfur batteries[J]. Electrochimica Acta, 2019, 304(1): 11-19.
[14] CHENG X B, YAN C, HUANG J Q, et al.The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection[J]. Energy Storage Materials, 2017, 6(1): 18-25.
[15] 刘洪利, 陈涛, 李风姣, 等. SEI膜对锂金属负极电化学性能影响的研究进展[J]. 电源技术, 2021,45(12): 1646-1649.
[16] LIN Y X, LIU Z, LEUNG K, et al.Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components[J]. Journal of Power Sources, 2016, 309: 221-230.
[17] 王维坤, 王安邦, 苑克国, 等. 锂硫电池实用化的问题及进展[C]//第31届全国化学与物理电源学术年会论文集. 天津:第31届全国化学与物理电源学术年会,2015.
[18] 廖红英, 王维坤, 孟蓉, 等. 实用化软包装锂硫电池电解液的研究[J]. 储能科学与技术, 2020, 9(1): 82-87.
[19] 卢洋. 实现锂硫电池固态化的界面优化策略研究[D]. 上海:中国科学院大学, 2020.
[20] LIU S, ZHAO Q, ZHANG X, et al.A high rate and long cycling life lithium metal anode with a self-repairing alloy coating[J]. Journal of Materials Chemistry A, 2020, 8(34): 17415-17419.
[21] 王其钰,王朔,张杰男,等.锂离子电池失效分析概述[J].储能科学与技术,2017,6(5):1008-1025.
[22] LI Z, HUANG J, LIAW B Y, et al.A review of lithium deposition in lithium-ion and lithium metal secondary batteries[J]. Journal of Power Sources, 2014, 254(12): 168-182.
[23] BARAI P, HIGA K, SRINIVASANZ V.Effect of initial state of lithium on the propensity for dendrite formation: A theoretical study[J]. Journal of the Electrochemical Society, 2017,164(2): A180-A189.
[24] FENG X N, OUYANG M G, LIU X, et al.Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10:246-267.
PDF(3553 KB)

21

Accesses

0

Citation

Detail

Sections
Recommended

/